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Abstract

In maximum likelihood methods, the three classical tests statistics are often unreliable for inference in
small samples even under correct model specification. In this paper, I discuss how the likelihood-ratio and
Wald tests statistics can be combined to obtain highly improved parameter inference in regression models
with small samples. I consider modifications obtained from both the Barndorff-Nielsen and the Lugannani
and Rice likelihood approximations, and I show how they can produce highly accurate parameter inference
in a general (possibly nonlinear) regression model with possibly non-spherical disturbances. I discuss the
underlying theory and provide Monte Carlo simulations demonstrating the superior accuracy of the
proposed procedures over the first-order classical likelihood methods (i.e., the signed log-likelihood ratio
test and the Wald test). An empirical application to a regression model of mobile money (“M-pesa”)
adoption in Kenya is provided as an illustration of the usefulness of these methods in practice.
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1 Introduction

Regression analysis is a central technique for empirical work in social sciences in general and in Economics

in particular. Standard asymptotic tests statistics such as the likelihood-ratio test statistic, the Wald test

statistic or the Score test statistic are often used to perform inference about parameters of interest, under

some distributional assumption. These likelihood based tests are appealing because they offer a general and

straightforward method for obtaining p-values and confidence intervals. However, in some settings (e.g.,

nonlinear multivariate regressions and/or regressions with nonormal errors), both the Score, the Wald and

the Likelihood-ratio tests can have poor properties when the sample size is small, or in general, when the

average information available per parameter is limited. Many examples are available to illustrate the failure

of these methods - usually referred to as first-order approximations - in models with small samples and/or

large numbers of nuisance parameters. Reviews of such examples can be found in Barndorff-Nielsen and
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Cox (1994), Elkantassi et al. (2023), Fraser and Reid (1995), Severini (2000), Butler (2007), Brazzale and

Davison (2008), Brazzale, Davison and Reid (2007), Fraser (2017).

For more accurate inference, refinements are needed to improve upon the first-order approximations,

find the distribution of the relevant statistic in the presence of small samples, and/or properly account for

nuisance parameters in the multi-parameter setting. This paper describes simple adjustments (tricks) that

combine the Log-likelihood ratio statistic and the Wald statistic (metrics) to obtain modified test statistics

that are much more accurate in small samples than these classical ones. These adjustments are based on

results in higher-order asymptotics developed by Lugannani and Rice (1980), Barndorff-Nielsen (1983, 1986),

Fraser (1990), Fraser, Reid and Wu (1999) and Skovgaard (1996). The development of these analytical ap-

proximations have led to a theory of near-exact inference based on small samples from parametric models,

and they not only provide modifications to well-established approaches which result in more accurate infer-

ences, but also give insight on when to rely upon classical first-order methods. Their theoretical basis is the

saddlepoint and related approximations that emerged in Daniels (1954, 1987) and further developments have

been well described by Reid (1988, 1995, 2003). These methods are highly accurate in many situations espe-

cially when dealing with small samples or large numbers of nuisance parameters, but have nevertheless been

under-used in Econometrics, Finance and other Social Sciences beyond the field of Computational Statistics,

compared to simulation procedures such as the Bootstrap. The reason may have been the technical details of

the methods or the lack of suitable software and computer power. But recent computational advances have

overcome these issues, and can allow likelihood-based small-sample parametric asymptotics to be widespread.

In this paper, I focus on the use of higher-order parameter inference methods in a general regression model

with possibly nonlinear location and possibly nonnormal and/or nonspherical errors. This includes several

special classes of models, e.g., binary choice models such as the logit model, nonnormal linear regression

models and nonlinear regression models with heteroscedastic normal errors, seemingly unrelated regression

models and others.1 I also provide computer programs for the implementation of these methods. The

objective is to make higher-order inference for such models better known and available for use by applied

researchers who do not necessarily have a command of the technical details. Using real data from mobile

money adoption in Kenya the proposed methods are applied to a logistic growth model of technology diffusion

at its early adoption stage where only few data points are available. Some background on the regression

model is given in Section 2, and a review of the relevant likelihood asymptotic theory is given in Section 3.

The likelihood-based results for the general regression model are developed in Section 4. Numerical examples

involving Monte Carlo simulations and real data applications are provided in Sections 5. Concluding remarks

are given in Section 6.

1The seemingly unrelated regression model is discussed by Fraser, Rekkas and Wong (2005).
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2 Regression Models and Classical Tests

Consider a general regression model given by

y = g(x,β) + Ωϵ, (1)

where y is an n-vector of the dependent variable, x is an n × K matrix of regressors, ϵ is an n-vector of

possibly nonnormal errors with a distribution f(ϵ), and g(x,β) is an n-vector of possibly nonlinear smooth

functions of x and a K-parameter vector β, and Ω is a scaling matrix which could potentially depend on

data x and/or parameters γ to allow for possibly heteroskedasticity and/or serial correlation.2 In this model,

we are often interested in testing one of the scalar parameters β1, . . . , βK denoted βk (or one of the scalar

parameters in the matrix Ω). We could also be interested in jointly testing several parameters of this model.

The latter can then be easily obtained by testing them sequentially, holding the preceding ones fixed. In the

classical approach, inference for the parameter βk is provided in the form of a p-value, p(βk), that gives the

probability position of the data relative to the value βk for the parameter. A test of the parameter value βk

consists in seeing whether the p-value p(βk) is close to 0 or close to 1, and a 100(1−α)% confidence interval

is obtained by inverting the p-value function as follows

[β̂Lk , β̂Uk ] =
[
min

{
p−1(1− α/2), p−1(α/2)

}
, max

{
p−1(1− α/2), p−1(α/2)

}]
. (2)

When the model is linear with normal homoskedastic errors, ie g(x,β) = X′β, where X = [i x] with

i = [1 . . . 1]′, Ω = σIn and ϵ ∼ N(0, In), then

p(βk) = Fn−K(tk) (3)

and

tk =
(β̂k − βk)

se(β̂k)
(4)

where β̂ = X′X
−1

X′y, s2 = (y −Xβ̂)′(y −Xβ̂)/(n−K), se(β̂k) is the squared-root of the (k, k) diagonal

element of s2(X′X)
−1

, and Fn−K is the Student distribution function with n−K degrees of freedom.

In the general case, the regression model (1) does not typically have an exact test statistics for inference

on βk or an exact distribution to produce the p-value, p(βk), as given by Equation (3). A common approach

is to rely on large sample theory results such as the central limit theorem and use likelihood-based classical

first-order test statistics such as the signed likelihood ratio departure r, the Wald departure q or the score

statistic z, given by:

r = sgn(β̂k − βk)[2{l(θ̂)− l(θ̂k)}]1/2 (5)

q = (β̂k − βk)(ĵ
kk)−1/2 (6)

2This set up is similar to the one discussed in Nguimkeu and Rekkas (2011). However, the present framework is more general
since the error density f(ϵ) is arbitrary, and inference concerns any scalar parameter in the model including both the mean
function and the variance parameters.
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z = lk(θ̂k)(ĵ
kk)1/2 (7)

where θ = (β1, . . . , βK ,γ
′)′ is the full parameter vector, l(θ) = ln f(y,θ) is the log-likelihood function,

lk(θ) = ∂ ln f(y,θ)/∂βk is the score for βk, θ̂ is the maximum likelihood estimator of θ = (β1, . . . , βK ,γ),

θ̂k is the constrained maximum likelihood estimator when the component βk is held at its hypothesized value,

ĵkk is the (k, k) element of the inverse ĵ−1 of the observed information matrix ĵθθ′ = ∂2l(θ)/∂θ∂θ′∣∣
θ=θ̂

.

For implementation, reliable optimizing routines are needed for θ̂ and θ̂k, especially when the error density

f(ϵ) has long tails. The statistics r, q and z have standard normal distributions up to the order O(n−1/2).

The p-values for inference on βk are therefore given by Φ(r), Φ(q) and Φ(z), where Φ(·) is the cumulative

distribution function of the standard normal.3 However, when the sample size is small these first-order

approximations are often inaccurate, especially in complex models.

3 Modified Likelihood-Based Tests

The testing procedures discussed in this paper for the general regression model (1) are modifications of the

directed log-likelihood statistic (i.e. the signed square-root of the log-likelihood ratio statistic given in (5)).

The keys to refining the approximate behavior of this likelihood quantity are two higher-order density approx-

imations: Barndorff-Nielsen’s (1983, 1986) formula and the tangent exponential model developed by Fraser,

Reid and Wu (1999). The former gives the density of the maximum likelihood estimate at the observed data

and at other points having the same value of an ancillary statistic. The latter is an exponential model whose

distribution function at the observed data differs from that of the conditional model by O(n−3/2) under the

observed conditioning (see, e.g., Fraser, Andrews & Wong, 2005).

Denote by ψ the scalar parameter of primary interest and λ a vector of parameters that are not of direct

concern (nuisance parameters), i.e. θ = (ψ,λ′)′. This partitioning entails corresponding splits of the score

vector lθ(θ) into lψ(θ) and lλ(θ), and of the observed information matrix ĵθθ′(θ) into the sub-matrices

ĵψψ(θ), ĵψλ′(θ), ĵλψ(θ) and ĵλλ′(θ). Third-order likelihood theory produces a metric of the departure of a

data point from a value of ψ and also produces the corresponding p-value. The departure measure does not

arise explicitly, but is analogous to the t statistic in (4). It is given by the modified signed log-likelihood

statistic defined by

r∗(ψ) = r(ψ)− r(ψ)
−1

ln

(
r(ψ)

Q(ψ)

)
(8)

where r(ψ) is the signed log-likelihood ratio statistic

r(ψ) = sgn(ψ̂ − ψ)
[
2
{
l(θ̂)− l(θ̂ψ)

}]1/2
(9)

and Q(ψ) is a special Wald-type departure metric defined by

3In practice, the approximate normality of r is usually better than that of q and z.
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Q(ψ) = sgn(ψ̂ − ψ)|χ(θ̂)− χ(θ)|

{
|ĵφφ′ |

|ĵ(λλ)(θ̂ψ)|

}1/2

(10)

where ĵφφ′ and ĵ(λλ)(θ̂ψ) are the observed information matrix and observed nuisance information matrix,

respectively, calculated in the nominal parametrization scale. More specifically, they can be obtained as

follows:

ĵφφ′(θ̂) = |ĵθθ′(θ̂)||φθ′(θ̂)|−2 (11)

ĵ(λλ)(θ̂ψ) = |ĵλλ′(θψ)||φ′
λ(θ̂ψ)φλ′(θ̂ψ)|−1 (12)

In the above formula, χ(θ) acts as a scalar canonical parameter for a one parameter marginal model for

testing the interest parameter ψ

χ(θ) =
ψφ′(θ)

|ψφ′(θ)|
φ(θ), (13)

where ψφ′(θ) =
∂ψ(θ)

∂φ′ =

(
∂ψ(θ)

∂θ′

)(
∂φ′(θ)

∂θ′

)−1

. Now, all that is needed is the nominal reparameterization

φ(θ) specific to the data point y, given by

φ′(θ) =
∂l(θ;y)

∂V
=
∂l(θ;y)

∂y′ V. (14)

The vectors in V indicate how y responds to changes in θ and can be constructed coordinate by coordinate

from a full n-dimensional pivotal quantity q(θ;y) that has θ-free distribution as follows:

V =
∂y

∂θ′

∣∣∣∣
θ=θ̂

=

{
∂q(θ;y)

∂y′

}−1 {
∂q(θ;y)

∂θ′

}
. (15)

If the model is exponential then φ(θ) can be taken to be any version of the canonical parameter. In

general, φ(θ) is a gradient of the log-likelihood taken in directions that conform to an approximate ancillary

that describes the model structure locally.

The highly accurate likelihood-based p-value p(ψ) employed to test the value of a scalar parameter of

interest ψ(θ) = ψ can then be obtained using either of the asymptotically equivalent expressions:

Φ(r) + ϕ(r)

{
1

r
− 1

Q

}
(16)

and

Φ(r∗) = Φ

(
r − r−1 ln

{
r

Q

})
, (17)

where ϕ(·) is the probability density function (pdf) of the standard normal. Confidence intervals at 100(1−

α)% are then obtained by inverting these p-value functions are given in Equation (2). Expression (16) is

known as the Lugannani and Rice (1980) approximation and expression (17) is known as the Barndorff-

Nielsen (1991) approximation based on the modified signed log-likelihood statistic r∗. As shown by these
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authors, these two approximations, which are combinations of the classical statistics r and Q, converge at

a O(n−3/2) rate and are thus referred to as third-order approximations. They are superior to the latter

two which have the usual O(n−1/2) rate of convergence and are hence commonly referred to as first-order

approximations.

The above discussion applies in general to continuous response models. For discrete responses, analogous

results can be found in Davison, Fraser, and Reid (2006). However, for distributions whose support has a

lattice structure or can easily be transformed to a lattice structure (e.g. binomial and Poisson ), the use of a

slightly modified form of (16) provides approximations to tail probabilities with error O(n−1) ( Severini, 2000;

Davison, 2003). Likewise, when the parameter of interest is a vector, Skovgaard (2001) suggests adjusting

the likelihood ratio statistic in a way that generalizes r∗ to the multiparameter case.

4 Improved Inference in Regression Models

We now use the modified likelihood-based methods described above to develop inference procedures for the

regression model (1). We assume that the regression function g(x,β) is continuously differentiable and that

the error density function f(ϵ) is also continuously differentiable. We assume that the scaling matrix Ω

is positive definite and is indexed by a fixed low-dimensional vector of parameters γ, that is, Ω = Ω(γ).

In practice, this would be the case when Ω captures, for example, possible heteroskedasticity and/or serial

correlation in the model with a well defined covariance structure. Emphasizing this parameterization, the

model is rewritten as

y = g(x,β) + Ω(γ)ϵ. (18)

If the parameter of interest on which we wish to perform inference is taken to be βk, the full model

parameter vector can be rewritten as

θ = (β′, γ′)′ = (βk,λ
′)′,

with λ = (β1, . . . , βk−1, βk+1 . . . , βK ,γ
′)′. If the interest is on γs, then θ = (γs,λ

′)′, and the nuisance pa-

rameter is λ = (β′, γ1, . . . , γs−1, γs+1 . . . , γS , )
′. In the discussion below we focus on the former case, but the

latter case follows similarly by changing the roles of the scalar parameter of interest. In the numerical results,

we illustrate both cases. This framework allows wide generality for the error distribution, including the case

of dependent errors (captured by the covariance matrix Ω). We therefore assume that the components ϵi of

the vector ϵ are independent with individual density fi(ϵ) = exp{li(ϵ)} and assume that these densities have

been centered so that the individual scores Si(ϵ) =
dli(ϵ)

dϵ
are 0 at the origin, that is, Si(0) =

dli(ϵ)

dϵ

∣∣∣∣
ϵ=0

= 0.

Denote by ei the n-dimensional vector whose ith element is 1 and all the other elements are 0.

The log-likeliood function of the model has the form
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l(θ) = − log |Ω|+
n∑
i=1

li
(
e′iΩ

−1[y − g(x,β)]
)

(19)

In the normal error model, i.e. li(ϵ) = −1

2
log(2π)− 1

2
ϵ2, the log-likelihood function (19) takes the form

l(θ) = −1

2
log(2π)− log |Ω| − 1

2

n∑
i=1

[y − g(x,β)]′Ω′−1eie
′
iΩ

−1[y − g(x,β)]

= −1

2
log(2π)− 1

2
log |Σ| − 1

2
[y − g(x,β)]′Σ−1[y − g(x,β)],

where the last display follows by noting that
∑n
i=1 eie

′
i = In and denoting ΩΩ′ by Σ. The case of ho-

moscedastic normal errors can then be treated by setting Σ = Σ(σ) = σ2In. The heteroskedastic case

can be treated by denoting γ = (σ, δ′)′ and setting Σ = Σ(σ, δ) = σ2W (x, δ), where the matrix function

W (x, δ) may depend on the data. The matrix Σ can also be defined to handle the case of serially correlated

disturbances. For example, for a regression model with first-order autoregressive disturbances (AR(1)) with

autocorrelation coefficient ρ and error variance σ2, the variance parameter vector is γ = (σ, ρ)′ and an

expression for the matrix Σ, which can be found in Nguimkeu and Rekkas (2011), is given by

Σ = Σ(σ, ρ) = σ2



1 −ρ 0 · · · 0

−ρ 1 + ρ2 −ρ · · · 0

0 −ρ
. . .

. . .
...

...
...

. . . 1 + ρ2 −ρ

0 0 · · · −ρ 1


. (20)

Likewise, for a regression model with first-order moving average disturbances (MA(1)) with correlation

coefficient ρ and error variance σ2, an expression for the matrix Σ, which can be found in Nguimkeu (2014),

is given by

Σ = Σ(σ, ρ) = σ2



1 + ρ2 ρ 0 · · · 0

ρ 1 + ρ2 ρ · · · 0

0 ρ 1 + ρ2
. . .

...
...

...
. . .

. . . ρ

0 0 · · · ρ 1 + ρ2


. (21)

Maximization of the general log-likelihood function (19) over the parameter space produces the maximum

likelihood estimator θ̂ = (β̂k, λ̂
′
)′. This is usually calculated using some iterative procedure applied to the

normal equations given by
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lβ(θ) = −
n∑
i=1

∇βg(x,β)Ω
′−1eiSi

(
e′iΩ

−1[y − g(x,β)]
)
= 0 (22)

lγs(θ) = −tr

(
Ω−1 ∂Ω

∂γs

)
+

n∑
i=1

[y − g(x,β)]′
∂Ω′−1

∂γs
eiSi

(
e′iΩ

−1[y − g(x,β)]
)
= 0, s = 1, . . . ,m (23)

where ∇βg(x,β) =

(
∂g(x,β)′

∂β1
, . . . ,

∂g(x,β)′

∂βk

)′

is the k × n matrix of partial derivatives of g(x,β) and

∂Ω−1

∂γs
= −Ω−1 ∂Ω

∂γs
Ω−1. The solution to these equations gives the maximum likelihood estimator θ̂. The

constrained maximum likelihood estimator θ̂k = (βk, λ̂
′
)′ is then computed in the same way but with βk

fixed at its hypothesized value and the associated equation lβk
(θ) = 0 omitted in the system of equations

(22). Likewise, if the interest is in γs, then the constrained maximum likelihood estimator θ̂s = (γs, λ̂
′
)′

is obtained by jointly solving these equations but with γs fixed at its hypothesized value and the equation

lγs(θ) = 0 omitted in the system (23).

To compute the information matrix, jθθ′ , we need the second order derivatives given by

lββ′(θ) =

n∑
i=1

∇βg(x,β)Ω
′−1eie

′
iΩ

−1∇β′g(x,β)Hi

(
e′iΩ

−1[y − g(x,β)]
)

−
n∑
i=1

∇ββ′g(x,β)Ω′−1eiSi
(
e′iΩ

−1[y − g(x,β)]
)

(24)

lβγs(θ) = −
n∑
i=1

∇βg(x,β)Ω
′−1eie

′
i

∂Ω−1

∂γs
[y − g(x,β)]Hi

(
e′iΩ

−1[y − g(x,β)]
)

−
n∑
i=1

∇βg(x,β)
∂Ω′−1

∂γs
eiSi

(
e′iΩ

−1[y − g(x,β)]
)
, s = 1, . . . ,m (25)

lγsγs(θ) = −tr

(
∂Ω−1

∂γs

∂Ω

∂γs
+Ω−1 ∂

2Ω

∂γ2s

)
+

n∑
i=1

[y − g(x,β)]′
∂Ω′−1

∂γs
eie

′
i

∂Ω−1

∂γs
[y − g(x,β)]Hi

(
e′iΩ

−1[y − g(x,β)]
)

+

n∑
i=1

[y − g(x,β)]′
∂2Ω−1

∂γ2s
eiSi

(
e′iΩ

−1[y − g(x,β)]
)
, s = 1, . . . ,m (26)

where Hi(ϵ) =
d2li(ϵ)

dϵ2
is the second-order derivative of the individual likelihood and ∇ββ′g(x,β) is the

k × k matrix of second order partial derivatives of g(x,β). From this, we calculate ĵθθ′ = jθθ′(θ̂) and

ĵλλ′ = jλλ′(θ̂k) using the full and constrained maximum likelihood values.

For the calculation of Q, we need the conditioning vectors V in (15) obtained from an appropriate pivotal

quantity. We consider the location-scale standardized coordinates in the vector quantity

q(y,x;θ) = Ω−1[y − g(x,β)],

8



which is an n-dimensional quantity with a θ-free distribution. The tangent directions for an ancillary are

then obtained using formula (15) as the following n× (k +m) matrix.

V =
(

∇β′g(x, β̂), Ω̂−1
γ1 Ω̂

−1[y − g(x, β̂)] , . . . , Ω̂−1
γmΩ̂−1[y − g(x, β̂)]

)
where Ω̂−1 = Ω−1(γ̂) and Ω̂−1

γs =
∂Ω−1(γ)

∂γs

∣∣∣∣
γ=γ̂

, s = 1, . . . ,m. These vectors V are then used in

formula (14) to obtain the nominal exponential parameterization, φ(θ). The values of χ(θ) and Q follow by

direct calculations from (10) to (13). Highly accurate tail probabilities can then be obtained by either the

Lugannani and Rice (LR) formula or the Barndorff-Nielsen (BN) formula given by (16) and (17) respectively.

These results are now accessed in numerical studies to demonstrate their finite sample performances in

three simulations and a real data example.

5 Monte Carlo Simulations

The goal of the simulation study is to assess the small sample performance of the proposed methods and

compare them with other methods. The accuracy of the different methods is evaluated by computing central

coverage and tail probabilities at the nominal 95% confidence interval for the parameters of interest. In

particular, we compute the proportion of the true parameter value falling within the method’s confidence

interval (central coverage), the proportion of the true parameter value falling above the upper limit of the

method’s confidence interval (upper error), and the proportion of the true parameter value falling below the

lower limit of the method’s confidence interval (lower error). The labels r, Wald, LR, and BN refer to the

signed log-likelihood ratio method, the Wald method, the Lugannani and Rice method and the Barndorff-

Nielsen method, given by formulas (9), (10), (16) and (17), respectively.

5.1 Simulation Study 1: Linear regression with non-normal errors

Consider the linear regression model defined by

yi = β0 + β1xi + ui, i = 1, . . . , n,

with β0 = 1 and β1 ∈ {0, 1}. The explanatory variable is log-normally distributed i.e. log(xi) ∼ N(0, 1).

Case 1: The errors follow a student distribution: ui = σϵi, with ϵi ∼ t(7) and σ ∈ {1, 2}

This model corresponds to the one given in (18) with g(x,β) = Xβ and Ω(σ) = σIn, where β = [β0 β1]
′,

x = [x1 . . . xn]
′, X = [i x] with i = [1 . . . 1]′, and ϵ is a vector of independent Student random variables with

7 degrees of freedom. With N = 100, 000 replications of sample size n = 5 from the Student distribution,

we calculate the corresponding p-values for testing β1 = 0, and σ = 1, using approximations (16) and (17).

The target accuracy is the uniform (0, 1) distribution.

The results in percentages are recorded in Table 1. The Nominal values are the targeted (or desired)

sizes for 95% confidence interval inference. The ability of the third-order methods (BN and LR) to give close
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Table 1: Results of Simulation study 1 for 95% CI

Hypothesis Method Upper Error Lower Error Central Coverage

β1 = 0 Nominal 0.0250 0.0250 0.9500
BN 0.0261 0.0242 0.9497
LR 0.0258 0.0253 0.9489
r 0.0693 0.0176 0.9131

Wald 0.0688 0.0154 0.9158
σ = 1 Nominal 0.0250 0.0250 0.9500

BN 0.0265 0.0256 0.9479
LR 0.0261 0.0258 0.9481
r 0.0657 0.0217 0.9126

Wald 0.0634 0.0258 0.9108

approximations when n = 5 attests to their reliability and superior accuracy in comparison with the classical

tests when the sample size is small. In particular, while the third-order methods produce upper and lower

error probabilities that are relatively symmetric, with a tail probability totaling approximately 5%, those

produced by the first-order methods are heavily skewed, with higher total error rates.

5.2 Simulation Study 2: Nonlinear regression with homoskedastic errors

Consider the nonlinear regression model defined by

yi = β0[1 + exp(−xiβ1)]−1 + σϵi

where the errors ϵi are either normal or Student(6), but the researcher does not know which of the two

families the errors belong to. We set β0 = β1 = 1, σ = 1, and examine a small sample of size n = 7 and

xi = 0, 1, 2, 4, 7, 10, 12.

We first simulate a normal model (i.e. ϵi ∼ N(0, 1)) and perform the analysis on the basis of the correct

(normal) model and incorrect (Student) model. Likewise, we simulate a Student (6) model (i.e ϵi ∼ t6)

and perform the analysis on the basis of the correct (Student) model and incorrect (Normal) model. We

perform N = 100, 000 replications for each case. The results obtained from testing the hypothesis β1 = 1 are

presented in Table 2. We note that when the model errors are correctly specified the third-order methods LR

and BN give highly accurate results that are very close to the targeted nominal frequency while first-order

methods, r and Wald are worse. The characteristics of the tail probabilities are similar to the previous

example, i.e., the proposed approaches have symmetric tail probabilities close to their nominal targets, while

the classical methods have highly skewed tail probabilities and are large in total error rates. When the errors

are incorrectly specified, the accuracy of the proposed third-order methods, BN and LR deteriorate, but

still give reasonable error rates while the classical methods are much worse, with total error rates sometimes

exceeding 18%.
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Table 2: Results of Simulation study 2 for 95% CI

Model Method Upper Error Lower Error Central Coverage

Normal Normal Analysis

Nominal 0.0250 0.0250 0.9500
BN 0.0259 0.0254 0.9487
LR 0.0261 0.0255 0.9484
r 0.0689 0.0297 0.9014

Wald 0.0601 0.0368 0.9031
Student Analysis

Nominal 0.0250 0.0250 0.9500
BN 0.0405 0.0316 0.9279
LR 0.0352 0.0331 0.9317
r 0.0971 0.0711 0.8318

Wald 0.0963 0.0802 0.8235
Student Normal Analysis

Nominal 0.0250 0.0250 0.9500
BN 0.0371 0.0351 0.9278
LR 0.0395 0.0359 0.9246
r 0.0717 0.0979 0.8304

Wald 0.0798 0.0958 0.8244
Student Analysis

Nominal 0.0250 0.0250 0.9500
BN 0.0261 0.0259 0.9480
LR 0.0263 0.0258 0.9479
r 0.0377 0.0507 0.9116

Wald 0.0335 0.0579 0.9086

5.3 Simulation Study 3: Linear regression with heteroskedastic errors

In this simulation we specify a linear model with heteroskedastic errors similar to Luger (2010)

yi = x′iβ + exp(ziγ)ϵi

where ϵi is i.i.d. according to a N(0, 1) distribution. Here xi is a 2×1 vector with the first element equal

to one and the other element is a standard normal random variable. Likewise, zi is an independent standard

nornal random variable. The regression parameters β are set equal to a vector of ones, and the scalar γ takes

values in [0, 1]. When γ = 0, the model is homoskedastic and when γ > 0 the model is heteroskedastic. We

examine a small sample of size n = 10 and we perform inference using N = 100, 000 replications for each of

the case where γ = 0 and γ = 1. The results obtained from testing these hypotheses are reported in Table 3.

As for the previous cases, this example confirms that while the third-order methods produce upper and

lower error probabilities that are relatively symmetric, with a tail probability totaling approximately 5% as

targeted and central coverage close to the nominal level of 95%, those produced by the classical first-order

methods are sometimes skewed with the total error probability as high as 11%.
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Table 3: Results of Simulation study 3 for 95% CI

Hypothesis Method Upper Error Lower Error Central Coverage

γ = 0 Nominal 0.0250 0.0250 0.9500
BN 0.0263 0.0261 0.9476
LR 0.0259 0.0260 0.9481
r 0.0619 0.0471 0.8910

Wald 0.0643 0.0448 0.8909
γ = 1 Nominal 0.0250 0.0250 0.9500

BN 0.0261 0.0258 0.9481
LR 0.0262 0.0261 0.9477
r 0.0692 0.0401 0.8907

Wald 0.0641 0.0492 0.8867

Unreported simulations show that as we increase the sample size n, all the methods tend to be ap-

proximately similar, with central coverage close to 95% while tail probabilities approach 5%. However, the

first-order methods converge much slower, as shown by the theory.4

6 Empirical Application: Mobile Money “M-Pesa” in Kenya

The use of mobile banking through cell phones plays an important role in the growth of economies, particu-

larly in less industrialized countries that generally have little access to formal financial services. A pioneering

effort in Kenya, “M-Pesa” (M for mobile, Pesa for money in Swahili language) has grown to be the world’s

largest mobile money service. The data for this application are taken from Jack and Suri (2014) to fit a

regression model of mobile money adoption rate in Kenya and perform parameter inference using the pro-

cedures discribed above. We also compare the results with those from traditional methods. The data that

we use are quarterly data ranging from 2007:1 to 2011:1 reporting the number of mobile money users over

time (that is, from april 2007 to april 2011). This application also perfectly suits our framework because,

given that the mobile money technology was relatively recent in Kenya in this period, only a small number

of time observations (n = 13) was available.

Figure 1(a) shows that M-PESA has grown rapidly since its launch in 2007 to reach 14 million registered

users in 2011. This corresponds to about 70% of the adult population in Kenya. On the other hand,

Figure 1(b) shows that this growth has occured at a decreasing rate tending to zero with time. The mobile

money adoption process in Kenya thus exhibits the standard features of technology diffusion processes.

They are expected to have an “S-shape” over time, which is typical to processes that consist of a slow early

adoption stage, followed by a phase of rapid adoption which then tails off as the adopting population becomes

saturated. A common approach used to model these processes is the Logistic trend curve defined by5

yi = β1 [1 + β2 exp(−β3xi)]−1
+ σiεi,

4These additional simulations results are available from the author.
5An overview of the so-called growth curves is given in Mahajan, Muller and Bass (1993); see also Meade and Islam (1995).
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Figure 1: Levels and relative changes in mobile money adoption

(a) Number of mobile money users (b) Relative change in mobile money users

where yi is the number of mobile money users per 100 people at time xi = 1, 2, . . . , n, εi ∼ N(0, 1), and

g(xi, β) = β1 [1 + β2 exp(−β3xi)]−1
is the regression function, with β1, β2, β3 > 0. As for the conditional

response variance, we allow it to depend nonlinearly on the time covariate as in Davison and Hinkley (1997)

by σ2
i = σ2(1 + xi)

γ , where the two variance parameters γ and σ are to be estimated. Notice that when

γ = 0, the model’s disturbances are homoscedastic.6

The parameter β1 represents the carrying capacity, i.e. the maximum size that can be reached with

the available resources (e.g. level of mobile phone penetration), the parameter β2 reflects the relative

displacement and β3 is the growth rate of mobile money usage. Figure 2(a) plots mobile money usage (in

terms of the number of mobile money users per 100 people in the adult population) over the sample period in

Kenya as well as the nonlinear regression fit of the data using the Logistic regression function, which appears

to be graphically satisfactory. The estimation of the model was performed using numerical optimization

that requires reasonable starting values for the parameters. There are no particular rules for starting values

except that they should be as meaningful as possible to be close enough to the final values. I assume a

starting value of 100 for β1, that is, the number of users will reach at least 100 per 100 people in the adult

population. If we scale time so that x0 = 0 corresponds to April 2007, then using y0 = 1.0 from the data

and substituting β0
1 = 100 in the model assuming zero error yields β0

2 = 99. Returning to the data, at time

x1 = 1, the number of users per 100 adult people was y1 = 2.0. Using this value along with previously

determined start values and again setting the error to 0 gives β0
3 = 0.88. Estimation results using maximum

likelihood estimation (MLE) are given in Table 4.

The relative growth rate is estimated at β̂3 = 0.38 and the displacement parameter is estimated at

β̂2 = 24.75. The carrying capacity is estimated at β̂1 = 81.02. This means that in the long run the number

6The usual common competitor for the Logistic growth model when modeling technology adoption is the Gompertz growth
model. But preliminary analysis using the Nguimkeu (2014) selection test allows to retain the former for these data.
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Figure 2: Adoption rate, fitted values, and MLE residuals

(a) Adoption rate and fit (b) MLE residuals

Table 4: ML estimation results

Parameters ML Estimates Standard Errors

β1 81.025 6.4478

β2 24.748 4.4278

β3 0.3801 0.0382

γ -1.359 0.8636

lnσ 0.9670 0.2773

Log Likelihood - 31.02

No of obs. 13

of mobile money users per 100 adult people would be about 81.

The algorithm described in Section 4 can therefore be applied to provide p-value functions for the pa-

rameters β1, β2, β3, γ, and σ as well as corresponding confidence intervals for each of the methods (BN, LR,

Wald, r). Table 5 reports the 95% confidence interval for the model parameters from each of the methods.

Each of these methods agree that all the regression coefficients of the model are statistically significant at the

5% level, except the variance parameter γ which is insignificant, pointing to homoskedasticity. However, the

confidence intervals obtained in Table 5 show considerable differences that could lead to different inferences

about the parameters. While the third-order methods, BN and LR give very similar confidence intervals,

the first-order methods, r and Wald, on the other hand, give very different intervals. For example, a value

of γ = 1 can not be statistically distinguished from 0 in the higher-order inference, whereas this value is

statistically different from 0 in the first-order inference. Theoretically, the former are more accurate.
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Table 5: 95% Confidence Intervals for Parameter Inference

Parameters β1 β2 β3 γ lnσ

BN [69.70 114.4] [16.51 42.30] [0.2959 0.4841] [-3.016 1.2193] [0.7335 1.6445]

LR [68.84 106.8] 16.31 41.40] [0.2896 0.4833] [-3.043 1.0789] [0.7335 1.6445]

r [70.39 100.7] [17.69 38.22] [ 0.3041 0.4672] [-3.079 0.5146] [0.6265 1.4075]

Wald [68.39 93.66] [16.07 33.43] [0.3051 0.4550] [-3.051 0.3337] [0.5825 1.3515]

Boot [68.90 99.65] [16.12 43.35] [0.3020 0.4701] [-3.018 1.3724] [0.7502 1.5164]

7 Conclusion

Recently developed third-order likelihood theory is used to propose methods to obtain highly accurate p-

values for the parameters of regression models with small samples, by combining classical first-order approx-

imation methods. Confirming the theory, simulation results show that significantly improved inferences can

be made by using these third-order likelihood methods compared to the classical likelihood-based methods

(i.e., signed log-likelihood ratio statistic, Wald statistic). The proposed methods are found to outperform

the classical test statistics in every case including nonlinearity, non-normality and heteroskedasticity, and

across all criteria considered such as tail error probabilities, central coverage and average bias. An empirical

example with a logistic model of technology adoption using data from mobile money (”M-pesa”) in Kenya is

used to illustrate the usefulness of the proposed methods. Since these methods can be easily computationally

implemented, rely on familiar likelihood-based quantities and are highly tractable they are viable alterna-

tives to conventional methods in Econometrics. Extensions to these methods may include the consideration

of improved inference for linear (or nonlinear) combinations of model parameters, or the consideration of

non-regression models such as the Generalized Method of Moments (GMM), and other systems of equations

that do not rely on finite sample distributional assumptions.
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