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Abstract

This paper addresses the issue of detecting misspecification of conditional

moment restrictions (CMR). We propose a new Hausman-type test based on

the comparison of an efficient estimator with an inefficient one, both derived

by semiparametrically estimating the CMR using different bandwidths. The

proposed test statistic is asymptotically chi-squared distributed under correct

specification. We propose a general bootstrap procedure for computing critical

values in small samples. The testing procedures are easy to implement and

simulation results show that they perform well in small samples.
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1 Introduction

This paper addresses the issue of detecting misspecification on models defined by

conditional moment restrictions (CMR). Such models are pervasive in econometrics.

The most popular example is the theory of dynamic optimizing agents with time

separable utility where equilibrium conditions are typically stated and estimated in

terms of martingale differences. Other examples include models identified through

instrumental variables, models defined by conditional mean and conditional variance

without specific assumption on their distribution, nonlinear simultaneous equation

models, and transformation models. Estimation of such models have been inten-

sively investigated. One of the most popular technique is the generalized method

of moment (GMM) introduced by Hansen (1982), where a finite number of uncon-

ditional moment restrictions is derived from the conditional moments using the so-

called instrumental variables (IV), which are arbitrary measurable functions of the

conditioning variable. Subsequent techniques have been considered to provide more

efficient and accurate estimators. Chamberlain (1987) allowed for heteroskedastic-

ity and showed that the semiparametric efficiency bound for CMR models can be

attained. Robinson (1987), Newey (1990, 1993) discussed ways to obtain the semi-

parametric efficiency bound using nonparametric optimal instruments. Focusing

on Smoothed Generalized Empirical Likelihood (GEL) methods, Donald, Imbens

& Newey (2003), Kitamura, Tripathi & Ahn (2004), and Smith (2007a,b) provided

one-step efficient estimators that does not require preliminary consistent estimators,

whereas Antoine, Bonnal & Renault (2007) developed a three-step efficient estima-

tor based on a smoothed euclidean Empirical Likelihood (EL). Dominguez & Lobato

(2006) introduced a class of estimators whose consistency does not depend on any

user-chosen parameter, however, the semi-parametric efficiency bound cannot be

attained with their procedure. In a recent work, Lavergne and Patilea (2008, hence-

forth denoted LP) proposed a new class of estimators obtained by Smooth Minimum

Distance (SMD) estimation. Their theory provides a way to obtain
√
n-consistent

and asymptotically normal estimators uniformly over a wide range of bandwiths in-
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cluding arbitrary fixed ones, that is, bandwidths that do not depend on the sample

size. Moreover, for a vanishing bandwidth a semiparametrically efficient estimator

for CMR can be obtained by their procedure. All estimation procedures rely on the

crucial assumption that the Conditional Moment Restrictions under consideration

are correctly specified. If the model is misspecified, the resulting estimators may

have extremely different properties. A central issue for the practitioner is therefore

to check the validity of these moment restrictions upon which estimation results

crucially depend.

Some existing specification tests of CMR test a finite set of arbitrary uncon-

ditional moment restrictions implied by the conditional moment restrictions, see,

e.g., the contributions of Newey (1985), Tauchen (1985) and Wooldridge (1990).

Dominguez and Lobato (2004), Delgado, Dominguez & Lavergne (2006) propose

consistent specification tests based on a Cramer Von Mises criterion that are consis-

tent against any alternative, but the asymptotic distribution of their tests statistic

depends on the specific data generating process, thus making standard asymptotic

inference procedures infeasible. Recent approaches like those of Tripathi & Kita-

mura (2003) and Otsu (2008) are based on smoothed empirical likelihood methods,

that involve complex nonlinear optimization over many parameters, thus making

the tests difficult to implement in practice.

This paper proposes a new practical procedure for testing the hypothesis that

the model is correctly specified, that is, there exists a vector of parameter values

that satisfies the conditional moments restrictions. The test is based on the distance

between two SMD estimators: a consistent and asymptotically efficient one- indexed

by a vanishing bandwidth - and a consistent but inefficient one - indexed by a fixed

bandwidth. The test statistic is asymptotically chi-squared distributed under the

null. We also propose bootstrap methods to approximate this test in small and

moderate samples. The distributions and the validity of our bootstrap procedure

are studied. Simulations show that the proposed specification test have good size

and power performance in small and moderate samples.

The rest of the paper is organized as follows. In Section 2, we present the
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framework and the proposed test statistic. In Section 3, we discuss the asymptotic

distribution and power properties. Bootstrap procedures to approximate the behav-

ior of the test is proposed in Section 4. Section 5 reports Monte Carlo simulations

results showing that our test possess satisfactory finite sample properties. Section 6

concludes whereas Section 7 gathers all the proofs and some of our technical formu-

las.

2 Framework and Tests

In this section, we describe our general framework for estimation and specification

testing in CMR models, and explain the rationale for the proposed test. We use the

following notations throughout. For a real valued function l(·), ∇θl(·) and Hθ,θl(·)

denote the p-column vector of first partial derivatives and the squared p matrix of

second derivatives of l(·) with respect to the p-dimensional vector θ ∈ Rp. If l(·) is

a r-vector valued function, that is l(·) ∈ Rr, then ∇θl(·) is rather the p × r matrix

of first derivatives of the entries of l(·) with respect to the entries of θ.

Suppose we have a random sample of n independent observations {Zi = (Yi, Xi)}ni=1

on Z = (Y ′, X ′)′ ∈ Rs+q, s ≥ 1, q ≥ 1. X is distributed with Lebesgue den-

sity function f(·) while Y can be continuous, discrete, or mixed. Let g(Z, θ) =

(g(1)(Z, θ), ..., g(r)(Z, θ)) be a known r-vector of real valued measurable functions

of Z and of the p-dimensional parameter vector θ that belongs to a compact set

Θ ⊂ Rp, p ≥ 1. The conditional moment restrictions are defined by

E[g(Z, θ0)|X] = 0 a.s. for some θ0 ∈ Θ (1)

Many econometric models are covered by this setup. In some contexts, the vec-

tor g(Z, θ) is the residual vector from some nonlinear multivariate regression. In

others, E[g(Z, θ0)|X] is seen as the first order partial derivatives of some stochastic

optimization problem.

Our test statistic use the Lavergne & Patilea (2008) smooth minimum distance

(SMD) class of estimators for θ0 characterized by (1). The typical SMD estimator
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obtains as the argument minimizing

Mn,h(θ,Wn) =
1

2n(n− 1)hq
∑

1≤i 6=j≤n
g′(Zi, θ)W−1/2

n (Xi)W−1/2
n (Xj)g(Zj , θ)Kh

ij (2)

where Kh
ij = K ((Xi −Xj)/h), with K(·) a multivariate kernel, h a bandwidth

parameter, and Wn(·) a sequence of r × r positive definite weighting matrices.

When the model is correctly specified, Lavergne and Patilea (2008) showed that a
√
n-consistent and asymptotically normal estimator can be obtained by minimizing

(2) for Wn(·) = Ir, the identity matrix, and a fixed bandwidth d, that is a bandwidth

that does not depend on n. Moreover, a semiparametrically efficient SMD estima-

tor θ̂n,h follows from a two-step procedure where the second step uses a vanishing

bandwidth h and a nonparametric estimator Ŵn(·) of Var[g(Z, θ0)|X = ·]f(·), the

density-weighted conditional variance of g(Z, θ0) as the weighting matrix. For any

preliminary consistent estimator θ̌ of θ0, we consider the estimator

Ŵn(x) =
1
n

n∑
k=1

g(Zk, θ̌)g′(Zk, θ̌)b−qK((x−Xk)/b) , (3)

where b is a bandwidth converging to zero. We note that a different kernel could

also be used in the above estimator without affecting our results, as soon as this

kernel satisfies the assumptions stated later.

However, a specification test is needed to check whether there exists a θ0 such

that the conditional moment restrictions (1) hold. Following an approach à la Haus-

man (1978), our proposed test is based on the distance between two SMD consistent

estimators based on different bandwidths. More specifically, we focus in what fol-

lows on the comparison of an efficient estimator θ̂n,h of θ0, that uses a vanishing

bandwidth h together with the estimated optimal weighting matrix (3), with a non

efficient one θ̃n,d, that uses a fixed bandwidth d but the same weighting matrix.

Hence we define the test statictics HWd,h as

HWd,h = n
(
θ̃n,d − θ̂n,h

)
Q̂−1
d

(
θ̃n,d − θ̂n,h

)
(4)

where Q̂d is a consistent estimator of Qd, the asymptotic variance-covariance matrix

of
√
n(θ̃n,d − θ̂n,h). When the model is correctly specified, both estimators are
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consistent for θ0 so that their difference converge in probability to zero. The test

statistic has then a simple chi-squared limiting distribution. In the presence of

misspecification, the two estimators are expected to converge to different values

in most cases, so that the distance between θ̂n,h and θ̃n,d is nonzero even in large

sample. Hence, significantly large values of HWd,h are regarded as evidence that the

restrictions are not consistent with the data. Thus, the α-level test is I (HWd,h > cα)

where cα is the 1− α quantile of a χ2
p distribution.

A practical drawback of our test is that in some instances the asymptotic variance

of the estimator’s differences could be singular, so that one should use a modified

inverse, as proposed by Lutkepohl and Burda (1997), or a regularized inverse, as

proposed by Dufour & Valery (2009). Our test statistic uses the optimal estimated

weighting matrix for both estimators. Such a choice implies that θ̃n,d is computed

in a supplementary step. Given that one already has at disposal a preliminary

consistent estimator, this is easily done using a one quasi-Newton step.

3 Asymptotic Properties

We now provide regularity conditions under which the asymptotic properties of our

specification test statistic is analyzed. In what follows, we denote by M̂n,h(θ) the

objective function that uses Ŵn(·) as defined by (3). Under correct specification, the

objective function is then equivalent at first-order to the one using the true optimal

weighting Var[g(Z, θ0)|X = ·]f(·), as shown by Lavergne and Patilea (2009).

Assumption 1. (i) The parameter space Θ is compact.

(ii) θ̄n,h = arg minΘ EMn,h(θ) is unique and belongs to
◦
Θ, the interior of Θ.

Assumption 2. (i) The kernel K(·) is a symmetric, bounded real-valued function,

which integrates to one on Rq,
∫
K(u)du = 1.

(ii) The class of all functions (x1, x2) 7→ K(x1−x2
h ), x1,x2 ∈ Rq, h > 0, is Euclidean

for a constant envelope.

(iii) The Fourier transform F [K](·) of the kernel K(·) is strictly positive, attains a

maximum at 0, and is Holder continuous with exponent a > 0.
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(iv) The density f(·) of X is bounded away from zero and infinity with bounded sup-

port D that can be written as finite unions and/or intersections of sets {x : p(x) ≥ 0},

where p(·) is a polynomial function.

Let us define τ(x, θ) = E[g(Z, θ)|X = x].

Assumption 3. (i) The function x 7→ supθ ‖τ(x, θ)‖f(x) belongs to L2 ∩ L1.

(ii) The families Gk = {g(k)(·, θ) : θ ∈ Θ}, 1 ≤ k ≤ r are Euclidean for an envelope

G with supx∈Rq E[G8|X = x] <∞.

(iii) There exists c > 0 such that for all θ1, θ2 ∈ Θ, E‖g(Z, θ1)−g(Z, θ2)‖ ≤ c‖θ1−θ2‖

(iv) Let ω2(·, θ) = E[g(Z, θ)g′(Z, θ)|X = ·]. Then, for all θ1, θ2 ∈
◦
Θ and all x ∈ Rq,

‖ω2(x, θ1)− ω2(x, θ2)‖ ≤ c‖θ1 − θ2‖ν , for some c > 0 and ν > 2/3 .

(v) For any x, all second partial derivatives of τ(x, ·) = E[g(Z, ·)|X = x] exist on
◦
Θ.

There exists a real valued function H(·) with EH4 <∞ and some constant a ∈ (0, 1]

such that:

‖Hθ,θτ
(k)(X, θ1)−Hθ,θτ

(k)(X, θ2)‖ ≤ H(Z)‖θ1 − θ2‖a, ∀ θ1, θ2 ∈
◦
Θ, k = 1, . . . , r.

(vi) The components of ∇θτ(·, θ1)f(·) and of E [g(Z, θ1)g′(Z, θ2)|X = ·] f(·), θ1, θ2 ∈
◦
Θ, are uniformly bounded in L1 ∩ L2 and are continuous in θ1, θ2 ∈

◦
Θ.

Assumption 4. When(1) holds, (i) E [∇θτ(X, θ0)∇′θτ(X, θ0)] is non singular. (ii)

Each of the entries of ∇θτ(·, θ0)f(·), Hθ,θτ
(k)(·, θ0)f(·), 1 ≤ k ≤ r and H(·)f(·) is

Hölder continuous on D, with possibly different exponents.

Under correct specification, that is if the conditional moment restrictions (1) hold

for a unique θ0, then θ̄n,h = θ0 in Assumption 1. For Assumption 2 (ii), we refer

to Nolan & Pollard (1987), Pakes & Pollard (1989), and Sherman (1994a) for the

definition and properties of Euclidean families. The strict positivity of the Fourier

transform of the kernel K(·) is useful to establish consistency of SMD estimators

(see Lavergne & Patilea 2008). Assumption 2 is fulfilled for instance by products

of the triangular, normal, Laplace or Cauchy densities, but also by more general

kernels, including higher-order kernels taking possibly negative values. Assumption

3 garantees in particular that EMn,h(θ) is a continuous function with respect to

both θ and h, and that under H0 the second step estimator θ̂n,h is asymptotically
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efficient. Twice differentiability of g(z, ·) is not strictly needed for the construction

of our Hausman test statistic. This allows the specification test to apply to a wider

variety of models including conditional quantile restrictions. Assumption 4 is needed

only when studying the tests’ behavior under correct specification of (1). Part (i) is

a standard local identification condition.

We first sum up the main properties of the SMD estimators that follow from

results by Lavergne and Patilea (2008). Let Hn = {1/ ln(n+ 1) ≥ h > 0 : nh4q/α ≥

C} where C > 0 and α ∈ (0, 1) are arbitrary constants. Under (1), and for any

fixed d,
√
n
(
θ̃n,d − θ̂n,h

)
, considered as a process indexed by h ∈ Hn, converges in

distribution to a tight process whose marginals are zero-mean normal with covariance

function given by Qd. The definition of Qd, as well as its estimator Q̂d, is given in

Section 7.

Hence, when the model is correctly specified, the test statistic has the asymptotic

behavior stated below.

Theorem 1. Let Assumptions 1-4 hold. Then under (1) and for any fixed d, HWd,h

converge in distribution to a χ2
p uniformly over h ∈ Hn.

In the presence of misspecification, the population conditional moment E[g(Z, θ)|X]

is different from zero for any value of the parameter θ. In this case, SMD estimators

θ̃n,d and θ̂n,h would typically converge to two different limits. Denote θ̄d and θ̄0 the

probability limits of θ̃n,d and θ̂n,h when the model is misspecified, and by Qd the

probability limit of Q̂d.

Theorem 2. Let Assumptions 1-3 hold. Then uniformly over h ∈ Hn HWd,h
p−→ +

∞ provided Qd
−1 (

θ̄d − θ̄0

)
6= 0.

The above result makes clear that the test might not be consistent in some

circumstances, and in particular, if the two estimators have the same probability

limit.

8



4 Bootstrap Tests

Bootstrapping is popular to approximate the distribution of statistics when asymp-

totics may not reflect accurately their behavior in small or moderate samples. For

testing specification (1), application of bootstrap would require to generate resam-

ples with the same values of X, but new observations for Y that fulfill the moment

restrictions. This can be done easily in simple cases, e.g. wild bootstrap in regres-

sion models, and has been shown to give reliable approximations in many situations.

In general however, generating bootstrap samples may be difficult or even infeasible:

in simultaneous equations systems that are nonlinear in the variables Y , a reduced

form may not be available or unique. We here propose a simple method that allows

to circumvent these difficulties if they appear, that applies generally and is easy to

implement. This method has been proposed by Jin, Ying and Wei (2001) and Bose

and Chatterjee (2003), see also Chatterjee and Bose (2005) for a similar method

applied to Z-estimators and Chen and Pouzo (2009) for sieve minimum distance

estimators. However, they impose conditions that do not hold in our context. More

crucially, they do not investigate the use of this method for specification testing.

Instead of resampling observations, we perturb the objective function and re-

compute our test statistic using this perturbed objective function. Consider n inde-

pendent identical copies wi, i = 1, . . . n, of a known positive random variable w with

E (w) = Var(w) = 1 and Ew4 <∞. Define the new perturbed criterion as

M∗n,h(θ) =
1

2n(n− 1)

∑
1≤i 6=j≤n

wiwjg
′(Zi, θ)Ŵ−1/2

n (Xi)Ŵ−1/2
n (Xj)g(Zj , θ)Kij .

We can then compute new SMD estimators based on the perturbed objective func-

tion. Since the wi, i = 1, . . . n, are independent of the original sample, it is easy to

see that under the above conditions E[wg(Z, θ)|X] = E[g(Z, θ)|X] so that the per-

turbed function still fulfills the moment restrictions whenever the original function

does. With the new criterion, we repeat the optimization process by estimating θ̃∗n,d,

the bootstrap SMD estimator with fixed bandwidth d and θ̂∗n,h, the efficient one with

vanishing bandwidth h. In practice, one could simply use a Newton-Raphson step
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from the original estimators to update to the new estimators. We can then compute

the bootstrap version of our test statistic by

HW ∗d,h = n
(

(θ̃∗n,d − θ̃n,d)− (θ̂∗n,h − θ̂n,h)
)′
Q̂∗,−1
d

(
(θ̃∗n,d − θ̃n,d)− (θ̂∗n,h − θ̂n,h)

)
,

where Q∗d is the bootstrap counterpart of Qd and θ̃n,d and θ̃n,h are the original non-

bootstrap SMD estimators. The process is repeated a large number of times, say B,

to obtain an empirical distribution of the B bootstrap test statistics {HW ∗d,h,j}Bj=1.

This bootstrap empirical distribution is then used to approximate the distribution of

the test statistic HWd,h under correct specification, allowing to calculate the critical

values empirically. Typically, one rejects H0 at α level if HWd,h > cHα,B, where cHα,B
is the upper α-percentile of the empirical distribution {HW ∗d,h,j}Bj=1.

Although the procedure does not specify the number B of bootstrap replications

to be carried out, in practice it is recommended to choose a number sufficiently

large such that further increase does not substantially affect the critical values.

Following Dwass (1957), MacKinnon (2007) pointed out that in addition, the number

of bootstrap samples B must be such that the quantity α(B+1) is an integer, where

α is the level of the test. Moreover, as pointed out by Dufour & Khalaf (2001), the

later requirement, together with the asymptotic pivotalness of the test statistics are

necessary to get an exact bootstrap test.

The following theorem shows the uniform in bandwidth validity of the bootstrap

method.

Theorem 3. Under the assumption of Theorem 2, then conditionally on the sample

(i) Under H0, suph∈Hn
supu∈R

∣∣∣P(HW ∗d,h ≤ u|{Zi}ni=1)− P(HWd,h ≤ u)
∣∣∣ = op(1),

(ii) When H0 does not hold, HW ∗d,h = op(n) uniformly over h ∈ Hn

Since HWd,h diverges at rate n under the alternative as given in Theorem 2,

the second part of the theorem implies that P[HWd,h > HW ∗d,h]
p−→ 1 when n→∞,

which suffices to obtain a consistent test.
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5 Monte Carlo simulations

In this section we conduct Monte Carlo simulations to provide evidence on the be-

havior of our tests statistic in small and moderate samples, and compare our results

with some existing tests. The setup is the one considered by Newey(1993), Tripathi

& Kitamura (2003) , Kitamura et al. (2004) and Otsu (2008):

Y = θ1 + θ2X + ν, with θ1 = θ2 = 1 and lnX ∼ N(0, 1).

For the error term ν, we consider three different situations:

- Homoskedastic errors : ν = ε .

- Heteroskedastic errors : ν = ε
√
.1 + .2X + .3X2

- Mixture errors: ν =

 ε
√
.1 + .2X + .3X2 with probability 0.9

Cauchy(0,1) with probability 0.1
,

where ε ∼ N(0, 1) and ε is independent of X. This setup is useful to compare

our results with those of the above authors.We consider the SMD criterion with a

gaussian kernel.

Our main focus in this setting is to examine the behavior of the specification test

statistic under the null that the model is correctly specified, then observe its prop-

erties under a set of alternatives. Throughout this section, the null hypothesis is:

H0: E[Y − θ1 − θ2X|X] = 0 a.s. for some (θ1, θ2)

The fixed bandwidth considered is d = 1, while the efficient bandwidth is taken as

hn = n−1/5

We examine the power performance of our tests when misspecification is present by

evaluating their behavior under the following data generating processes (DGP):

HA
1 : Y = 1 +X + sX2 + ν, with s = 0, 0.2, 0.3, 0.4

HB
1 : Y = 1 +X + sφ(X) + ν, with s = 0, 3, 5, 7,

where φ(·) is the standard normal density function. The values of s are deviation

from the null. For s = 0, the model being tested is correctly specified. The bigger

the value of s, the farther the data generating process is likely to be from the null.

This is the same specification of DGPs used by Otsu (2008).
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Table 1 summarizes both our general and bootstrap tests statistics results and

also reports results for other specification tests. All the existing tests compared here

with our general test, denoted HW , are obtain from 1000 replications at a nominal

significance level of 5% with a sample size of n = 100. The figures reported on the

table are simulated rejection probabilities. The first row of each model reports sim-

ulation results under the null, thus showing the size of each test. While our general

test slightly over-rejects the null, it has a very good power under the alternatives,

especially for model HA
1 . Our results are compared to four other methods featured

in the Otsu (2008) simulation study: the method of conditional empirical likelihood

(CEL) proposed by Kitamura et al. (2004), the method of smoothed empirical like-

lihood (SCEL) by Otsu (2008), the Zheng’s (1998) test, and the Ramsey Regression

Equation Specification Error Test (RESET). Our general test has on average better

power performance than the CEL, the SCEL, the ZHENG and the RESET tests,

for the family of alternatives HA
1 . For the family of alternatives HB

1 , the power

performance of our general test is also good and compete with others.

For our bootstrap test, denoted HW b, we computed 199 bootstrap statistics from

1000 replications with sample size n = 100. At each replication, critical values at

5% significance are estimated by taking the 95th upper percentile of the distribution

of bootstrap values as explained in the bootstrap procedure presented in section

4. For the wild bootstrapping, the sample {ωi, i = 1, . . . , n} is generated at each

experiment via a two-point distribution defined by:

P
[
ωi =

3−
√

5
2

]
= 1− P

[
ωi =

3 +
√

5
2

]
=

5 +
√

5
10

Note that this distribution has its first, second and third central moment all equal

to one. As shown by Mammen (1992) for linear regression setups, this property

is expected to provide better bootstrap approximations of the test statistic. As

reported in the first column of the table our bootstrap test has a very good empirical

size since all rejection probabilities are within the nominal range of 5%. Moreover,

the empirical size performance of our bootstrap test is superior to all the other tests.

The power performance of the bootstrap test is also fairly good, though less good
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than our asymptotic test and other tests. This feature is however expected since a

gain in size is often traded with a relative loss in power in the bootstrap test due to

its conservative nature. To sum up, our general test statistic has very good power

performance in our simulation experiments and are competitive with existing tests.

Moreover, the superiority of the empirical size performance of our bootstrap shows

that our bootstrap test can properly handle small sample size models.

6 Conclusion

This paper has provided a new specification test for models defined by conditional

moment restrictions. The Test is built following a Hausman (1978) approach and

exploits the Lavergne & Patilea (2008) Smooth Minimum Distance estimators for

CMR. The test statistic is asymptotically chi-squared under the null hypothesis and

diverges under the alternative, uniformly within a wide range of bandwidths. A

bootstrap procedure is proposed to approximate the behavior of the test statistic

in small samples. We formally prove the validity of our bootstrap method and

use them to compute critical values of our tests. Both the test statistic and its

bootstrap counterpart is simple to implement and a Monte Carlo simulation study

shows that they perform well in small and moderate samples and are competitive

with existing tests. Moreover, the test require weaker mathematical assumptions

about the estimating function so that it readily applies to a wider variety of models.

Some directions to extend the proposed methods would be the generalization of the

testing procedure for the time series context. We plan to explore these issues in

further studies.

7 Technical material

In what follows, we denote θ̌ any preliminary estimator of θ0 and θ̄ the probabil-

ity limit of θ̌, which coincides with θ0 when the model is correctly specified. Let

Wn(x, θ̌) = E[Ŵn(x, θ̌)], where Ŵn(x, θ̌)
(
also denoted Ŵ (x), for simplicity

)
is the es-

timator of the optimal weighting matrix given by (3) and denote Wn(x) = Wn(x, θ̄).
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The sequence Wn(x) is a non-random process indexed by the bandwith b ∈ Hn and

its pointwise limit is denoted W (x) = limWn(x). Unless otherwise specified, we

denote M̂n,h(θ)
(
respectively, Mn,h(θ)

)
the objective function given in (2) with the

weighting matrix Ŵn(x) (respectively, Wn(x) ). Note that M̂n,h(θ) and Mn,h(θ) are

processes indexed by both the bandwidths h and b.

7.1 SMD estimation

Let φd(z, θ) = E[∇θτ(X, θ)W−1/2(X)d−qK((x−X)/d)]W−1/2(x)g(z, θ), φ0(z, θ) =

∇θτ(x, θ)W−1(x)f(x)g(z, θ), and Gnφ(θ) = 1√
n

∑n
i=1[φ(Zi, θ)− Eφ(Zi, θ)]. Define

Vd = E[∇θτ(X1, θ0)W−1/2(X1)W−1/2(X2)∇′θτ(X2, θ0)d−qK((X1 −X2)/d)]

V0 = E
[
∇θτ(X, θ0)W−1(X)[∇′θτ(X, θ0)f(X)

]
.

Lemma 7.1. Under Assumptions 1-4 and (1), then (i)
√
n
(
θ̂n,h−θ0

)
+V −1

0 Gnφ0(θ0) =

op(1), uniformly in h, b ∈ Hn, where Gnφn,h(θ0) weakly converges to a N(0, V0).

(ii)
√
n
(
θ̃n,d − θ0

)
+ V −1

d Gnφd(θ0) = op(1) uniformly in b ∈ Hn for any fixed d,

where Gnφd(θ0) weakly converges to a N(0,∆d), with

∆d,d = E[∇θτ(X1, θ0)W−1/2(X1)W−1/2(X3)∇′θτ(X3, θ0)f−1(X2)

d−2qK((X1 −X2)/d)K((X2 −X3)/d)] .

(iii)
√
n
(
θ̃n,d−θ̂n,h

)
weakly converges to a N(0, Qd) for any fixed d and uniformly

in h, b ∈ Hn, where Qd = V −1
d ∆dV

−1
d − V −1

0 .

Proof. Part (i) follows directly from Section 5.2 of Lavergne & Patilea (2008). Part

(ii) follows similarly by noticing that their condition (2.7) also holds for M̂n,d(θ),

where d is a fixed bandwidth. Part (iii) follows from (i) and (ii).

An estimator of Qd is given by Q̂d = V̂ −1
d ∆̂dV̂

−1
d − V̂ −1

0 where the respective

estimators of Vd, V0, and ∆d,d are

1
n(n− 1)

∑
i 6=j
∇θg(Zi, θ̃n,d)Ŵ−1/2

n (Xi)Ŵ−1/2
n (Xj)∇′θg(Zj , θ̃n,d)d−qK

(Xi −Xj

d

)
,
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1
n

∑
i

∇θg(Zi, θ̂n,h)Ŵ−1
n (Xi)fn(Xi)∇′θg(Zi, θ̂n,h) and

1
n(n−1)(n−2)

∑
i 6=k,j 6=k∇θg(Zi, θ̃n,d)Ŵ

−1/2
n (Xi)Ŵ

−1/2
n (Xk)∇′θg(Zk, θ̃n,d)f−1

n (Xj)

d−2qK
(Xi−Xj

d

)
K
(Xj−Xk

d

)
,

where fn(Xi) = 1
n−1

∑
j 6=i h

−qK((Xi−Xj)/h)) is the leave-one-out kernel estimator

of f(Xi)

Lemma 7.2. Let A,B ∈ Rn×p be random matrices such that E‖A‖ < ∞, E‖B‖ <

∞. Suppose E(A′B), E(B′A), and E(B′B) are non-singular matrices.

Then E−1(B′A)E(A′A)E−1(A′B)− E−1(B′B) is positive semidefinite, with equality

iff B = AE−1(B′A)E(B′B).

Proof. Consider C = AE−1(B′A)−BE−1(B′B) ∈ Rn×p. Then

E[C ′C] = E−1(B′A)E(A′A)E−1(A′B)− E−1(B′B)

is positive semidefinite by definition, as the expectation of a matrix product of the

form C ′C, and is zero if and only if C = 0. Conclude by noticing that C = 0 is

equivalent to B = AE−1(B′A)E(B′B)

Lemma 7.3. Let Assumptions 1-4 and (1) hold. Then, uniformly in h, b ∈ Hn and

for any fixed d,

(i) Q̂d = Qd + op(1)

(ii) Qd is positive semidefinite.

Proof. For part (i), we only need to prove that the matrices V̂d, ∆̂d and V̂0 converge

in probability to Vd, ∆d and V0 respectively, and use the continuous mapping theo-

rem to conclude. The convergence results for those matrices can be found in Section

5.2 of Lavergne & Patilea (2008).

For part (ii), apply Lemma 7.2 withA = E
[
W−1/2(X2)∇′θτ(X2, θ0)d−qK((X −X2)/d)

]
f−1/2(X)

and B = W−1/2(X)∇′θτ(X, θ0)f1/2(X). The desired conclusion then follows.
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7.2 Asymptotic behavior of the tests

Proof of Theorem 1

The result follows from Lemmas 7.1 and 7.3.�

Proof of Theorem 2

Denote δ = θ̄d − θ̄0. If Qd
−1
δ 6= 0, then δ′Qd

−1
δ is a strictly positive finite

number. Hence, uniformly over h, b ∈ Hn, n−1HWd,h =
(
θ̂n,h − θ̃n,d

)′
Q̂−1
d

(
θ̂n,h −

θ̃n,d
) p−→ δ′Qd

−1
δ > 0 as n→∞. It follows that HWd,h

P→ +∞ as n→∞. �

Lemma 7.4. Let Assumptions 1-3 hold. Then uniformly over h, b ∈ Hn,

sup
θ∈Θ

∣∣∣M̂n,h(θ)−Mn,h(θ)
∣∣∣ = op(1), (5)

Proof.

The proof proceeds in two steps.

Step 1 is to show that for any θ̄ ∈ Θ, supx∈Rq

∥∥∥Ŵn(x, θ)−Wn(x, θ̄)
∥∥∥ = op(1)

uniformly over b ∈ Hn and θ in an o(1) neighborhood of θ̄. For this purpose, we

apply a useful result given by Theorem 2 of Einmahl & Mason (2005) that establishes

that supx∈Rq

∥∥∥Ŵn(x, θ)−Wn(x, θ)
∥∥∥ = op(1) uniformly in θ ∈ Θ and over b ∈ Hn.

This result is true in this framework provided their condition (1.7) on the continuity

of the density f(·) is replaced by the condition of a bounded density as given by our

Assumption 2(iv). On the other hand, by our Assumption 3(iv) we have

sup
x∈Rq

∥∥Wn(x, θ)−Wn(x, θ̄)]
∥∥ ≤ c‖θ − θ̄‖ν‖E[b−qK((X − x)/b)]‖ ≤ C‖θ − θ̄‖ν ,

for some constant C > 0. It then follows that for any θ̄,

sup
x∈Rq

∥∥∥Ŵn(x, θ)−Wn(x, θ̄)
∥∥∥ ≤ sup

x∈Rq

∥∥∥Ŵn(x, θ)−Wn(x, θ)
∥∥∥+ sup

x∈Rq

∥∥Wn(x, θ)−Wn(x, θ̄)
∥∥

≤ op(1) + C‖θ − θ̄‖ν

Hence, supx∈Rq

∥∥∥Ŵn(x, θ)−Wn(x, θ̄)
∥∥∥ = op(1) uniformly over θ in an o(1) neighbor-

hood of θ̄. I then follows that for any preliminary estimator θ̌, of θ0, supx∈Rq

∥∥∥Ŵn(x, θ̌)−Wn(x)
∥∥∥ =
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op(1).

Step 2 uses the result of Step 1 to show Condition (5). For this purpose, we

can write M̂n,h(θ) −Mn,h(θ) = M1n + M2n, where M1n = M1n(θ, h, b) and M2n =

M2n(θ, h, b) are given by

M1n =
h−q

2n(n− 1)

∑
i 6=j

g′(Zi, θ)Ŵ−1/2
n (Xi, θ̌)[Ŵ−1/2

n (Xj , θ̌)−W−1/2
n (Xj)]g(Zj , θ)Kij

M2n =
h−q

2n(n− 1)

∑
i 6=j

g′(Zi, θ)[Ŵ−1/2
n (Xi, θ̌)−W−1/2

n (Xi, θ̌)]W−1/2
n (Xj)]g(Zj , θ)Kij

Let A and B be any two positive definite matrices. Since the euclidean matrix

norm ‖ · ‖ is unitarily invariant, then by Theorem 6.2 of Higham (2008) we have

‖A1/2−B1/2‖ ≤ 1
λmin(A)1/2 + λmin(B)1/2

‖A−B‖. If we write A−1−B−1 = A−1(B−

A)B−1, it then follows that

‖A−1/2 −B−1/2‖ ≤ 1
λmin(A)−1/2 + λmin(B)−1/2

‖A−1‖‖B−1‖‖A−B‖

Our Assumption 3(iii) together with Assumption 1(i) and step 1 guarantee that both

Ŵ−sn (x, ·) and W−sn (x, ·), s = 1, 1
2 , and their eigenvalues are uniformly bounded.

Hence, by the above inequality, there exists some constant C1 > 0 such that

sup
x∈Rq

∥∥∥Ŵ−1/2
n (x, θ̌)[Ŵ−1/2

n (x, θ̌)−W−1/2
n (x)]

∥∥∥ ≤ C1 sup
x∈Rq

∥∥∥Ŵn(x, θ̌)−Wn(x)
∥∥∥ ,

Thus, uniformly over h, b ∈ Hn,

‖M1n‖ ≤
C1

2n(n− 1)hq
∑
i 6=j
‖g(Zi, θ)‖‖g(Zj , θ)‖Kij

∥∥∥Ŵn(Xj , θ̌)−Wn(Xj)
∥∥∥

≤ C1

2n(n− 1)hq
∑
i 6=j

G(Zi)G(Zj)Kij sup
x∈Rq

∥∥∥Ŵn(x, θ̌)−Wn(x)
∥∥∥

The same argument can be applied to M2n so that uniformly in θ ∈ Θ and over

h, b ∈ Hn and for some constant C > 0,∣∣∣M̂n,h(θ)−Mn,h(θ)
∣∣∣ ≤ C

n(n− 1)hq
∑
i 6=j

G(Zi)G(Zj)Kij sup
x∈Rq

∥∥∥Ŵn(x, θ̌)−Wn(x)
∥∥∥

17



The first expression on the right hand side of the last display converges in probability

to C.E[G2(Z)|X]f(X) which is finite by Assumption 3(ii). The result of Step 1 then

completes the proof.

7.3 Bootstrap

Lemma 7.5. Under Assumptions 1-4, then conditionally on the sample and uni-

formly over h, b ∈ Hn,
√
n
(
θ̂∗n,h − θ̂n,h

)
and
√
n
(
θ̃∗n,d − θ̃n,d

)
have asymptotically the

same distribution as
√
n
(
θ̂n,h − θ̄0

)
and
√
n
(
θ̃n,d − θ̄d

)
, respectively. That is,

suph,b∈Hn
supu∈R

∣∣P(
√
n
(
θ̂∗n,h − θ̂n,h

)
≤ u|{Zi}ni=1)− P(

√
n
(
θ̂n,h − θ̄0

)
≤ u)

∣∣ = op(1),

supb∈Hn
supu∈R

∣∣P(
√
n
(
θ̃∗n,d − θ̃n,d

)
≤ u|{Zi}ni=1)− P(

√
n
(
θ̃n,d − θ̄d

)
≤ u)

∣∣ = op(1).

Proof. see section 5.2 of Lavergne & Patilea 2008

Proof of Theorem 3

It is immediate from Lemma 7.5 that conditionally on the sample and uniformly

over h, b ∈ Hn,
√
n(θ̃∗n,d− θ̃n,d+ θ̂n,h− θ̂∗n,h) has asymptotically the same distribution

as
√
n(θ̃n,d − θ̄d + θ̄0 − θ̂n,h).

(i) Under H0, we have θ̄d = θ̄0 = θ0 and Q̂∗d is asymptotically equivalent to Q̂d

so that HW ∗d,h and HWd,h have asymptotically the same χ2(p) distribution condi-

tionally to the sample. That is,

suph,b∈Hn
supu∈R

∣∣∣P(HW ∗d,h ≤ u|{Zi}ni=1)− P(HWd,h ≤ u)
∣∣∣ = op(1).

(ii) To prove the validity of the bootstrap when H0 does not hold, consider the

result given by Lemma 7.4. We note that if one replaces g(z, θ) by wg(z, θ) in all

the above steps, one can easily see that the result of Lemma 7.4 also holds for the

perturbed criteria M̂∗n,h(θ) and M∗n,h(θ). In other words, conditionally to the sample

and uniformly over h, b ∈ Hn we have

sup
θ∈Θ

∣∣∣M̂∗n,h(θ)−M∗n,h(θ)
∣∣∣ = op(1). (6)
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We finally also need to show that conditionally to the sample

sup
h,b∈Hn

sup
θ∈Θ

∣∣M∗n,h(θ)−Mn,h(θ)
∣∣ = op(1) (7)

Denote gn(Z, θ) = W
−1/2
n (X)g(Z, θ). We have

hq(M∗n,h(θ)−Mn,h(θ)) =
1

2n(n− 1)

∑
i 6=j

(wiwj − 1)gn(Zi, θ)gn(Zj , θ)Kij

=
1

2n(n− 1)

∑
i 6=j

(wi − 1)(wj − 1)gn(Zi, θ)gn(Zj , θ)Kij

+
1

2n(n− 1)

∑
i 6=j

(wi − 1)gn(Zi, θ)gn(Zj , θ)Kij

+
1

2n(n− 1)

∑
i 6=j

(wj − 1)gn(Zi, θ)gn(Zj , θ)Kij

= m1n(wi, wj) +m2n(wi) +m3n(wj)

Our assumptions guarantee that all the functions entering in the above terms as

indexed by θ, h and b are euclidean. The term m1n is a second-order degenerated U-

process. It follows from Corollary 8 of Sherman (1994) that suph,b>0 supθ∈Θ |m1n| =

Op(n−1). The terms m2n and m3n are zero-mean U-processes. By Corollary 7 of

Sherman (1994), we have suph,b>0 supθ∈Θ |m2n| = Op(n−1/2) and suph,b>0 supθ∈Θ |m3n| =

Op(n−1/2). Hence, suph,b∈Hn
supθ∈Θ h

q
∣∣∣M∗n,h(θ)−Mn,h(θ)

∣∣∣ = Op(n−1/2), so that

supθ∈Θ

∣∣∣M∗n,h(θ)−Mn,h(θ)
∣∣∣ = op(1), uniformly over h, b ∈ Hn.

It then follows from (5) (6) and (7) that

sup
h,b∈Hn

sup
θ∈Θ

∣∣∣M̂∗n,h(θ)− M̂n,h(θ)
∣∣∣ = op(1) (8)

We now use (8) to show that conditionally on the sample, θ̂∗n,h − θ̂n,h = op(1)

uniformly in h, b ∈ Hn. By (8), we have M̂∗n,h(θ̂∗n,h) − Mn,h(θ̂∗n,h) = op(1) and

M̂∗n,h(θ̂n,h) − Mn,h(θ̂n,h) = op(1) uniformly in h, b ∈ Hn. Also, by definition,
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M̂n,h(θ̂n,h) ≤ M̂n,h(θ̂∗n,h) and M̂∗n,h(θ̂∗n,h) ≤ M̂∗n,h(θ̂n,h). Hence,

M̂n,h(θ̂∗n,h) = M̂∗n,h(θ̂∗n,h) +
(
M̂n,h(θ̂∗n,h)− M̂∗n,h(θ̂∗n,h)

)
= M̂∗n,h(θ̂∗n,h) + op(1) ≤ M̂∗n,h(θ̂n,h) + op(1)

= M̂n,h(θ̂n,h) +
(
M̂∗n,h(θ̂n,h)− M̂n,h(θ̂n,h)

)
+ op(1)

= M̂n,h(θ̂n,h) + op(1) + op(1) = M̂n,h(θ̂n,h) + op(1)

Thus, M̂n,h(θ̂n,h) ≤ M̂n,h(θ̂∗n,h) ≤ M̂n,h(θ̂n,h)+op(1), so that uniformly over h, b ∈ Hn

M̂n,h(θ̂∗n,h)− M̂n,h(θ̂n,h) = op(1) (9)

Since θ̂n,h is the minimizer of M̂n,h(θ) in the compact set Θ, then we have ∀ε > 0,

inf{‖θ−bθn,h‖≥ε}
M̂n,h(θ) > M̂n,h(θ̂n,h). In other words, ∀ε > 0, ∃µ > 0 such that ‖θ−

θ̂n,h‖ ≥ ε implies M̂n,h(θ) > M̂n,h(θ̂n,h) + µ. Thus, the event
{
‖θ̂∗n,h − θ̂n,h‖ ≥ ε

}
is

contained in the event
{
M̂n,h(θ̂∗n,h)− M̂n,h(θ̂n,h) > µ

}
. Since by (9) the probability

of the latter converges to zero, so is the probability of the former. That is, θ̂∗n,h −

θ̂n,h = op(1) uniformly in h, b ∈ Hn . Likewise, all the above steps can be repeated

to establish that θ̃∗n,d− θ̃n,d = op(1) uniformly in b ∈ Hn for any fixed d > 0. Hence,

n−1HW ∗d,h =
(

(θ̃∗n,d − θ̃n,d)− (θ̂∗n,h − θ̂n,h)
)′
Q̂∗−1
d

(
(θ̃∗n,d − θ̃n,d)− (θ̂∗n,h − θ̂n,h)

)
= op(1),

and by Markov inequality, P
[
suph,b∈Hn

n−1HW ∗d,h ≥ ε|Z1, . . . , Zn

]
= op(1), ∀ε �
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Table 1: Rejection frequency of Specifications Tests for n = 100 at 5% level

Models HW b HW CEL SCEL ZHENG RESET

Homoskedastic

H0 0.052 0.069 0.059 0.041 0.004 0.010

HA
1 , s = 0.2 0.366 0.486 0.578 0.529 0.407 0.976

HA
1 , s = 0.3 0.384 0.640 0.792 0.760 0.647 0.996

HA
1 , s = 0.4 0.421 0.729 0.895 0.872 0.790 0.999

HB
1 , s = 3 0.291 0.330 0.158 0.130 0.100 0.018

HB
1 , s = 5 0.341 0.522 0.394 0.352 0.291 0.037

HB
1 , s = 7 0.430 0.566 0.703 0.676 0.547 0.042

Heteroskedastic

H0 0.044 0.083 0.082 0.060 0.052 0.029

HA
1 , s = 0.2 0.44 0.643 0.567 0.519 0.432 0.770

HA
1 , s = 0.3 0.76 0.893 0.769 0.740 0.641 0.94

HA
1 , s = 0.4 0.842 0.933 0.898 0.887 0.825 0.990

HB
1 , s = 3 0.109 0.228 0.390 0.344 0.268 0.074

HB
1 , s = 5 0.241 0.492 0.768 0.732 0.597 0.083

HB
1 , s = 7 0.292 0.698 0.940 0.930 0.822 0.100

Mixture

H0 0.047 0.079 0.077 0.053 0.058 0.033

HA
1 , s = 0.2 0.146 0.278 0.536 0.494 0.409 0.782

HA
1 , s = 0.3 0.252 0.390 0747 0.716 0.632 0.928

HA
1 , s = 0.4 0.312 0.419 0.874 0.854 0.789 0.980

HB
1 , s = 3 0.104 0.154 0.351 0.298 0.235 0.062

HB
1 , s = 5 0.214 0.320 0.704 0.677 0.535 0.085

HB
1 , s = 7 0.366 0.478 0.911 0.901 0.771 0.082
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